Episodes

  • 01 – From Population to Sample [Link]
  • 02 – The Statistical Disciplines [Link]
  • 03 – Boxplot [Link]
  • 04 – Organization of Data [Link]
  • 05 – Boxplot 2° Episode [Link]
  • 06 – Linear Regression (Intro) [Link]
  • 07 – Sample Variance [Link]
  • 08 – Principal Component Analysis (PCA) [Link]
  • 09 – Clustering (Intro) [Link]
  • 10 – Hypothesis Testing (General Overview) [Link]
  • 11 – Law of Large Numbers [Link]
  • 12 – Correlation vs Causality [Link]
  • 13 – Statistical Wishes [Link]
  • 14 – Histograms (Intro) [Link]
  • 15 – Statistical Distributions [Link]
  • 16 – P-Value [Link]
  • 17 – Classification Problem [Link]
  • 18 – Probability Mass Function [Link]
  • 19 – Sample Mode [Link]
  • 20 – Pie Chart [Link]
  • 21 – Simpson’s Paradox [Link]
  • 22 – Histograms 2° Episode (Class Width) [Link]
  • 23 – Anscombe’s Quartet [Link]
  • 24 – Association Rules (Intro) [Link]
  • 25 – Poisson Distribution [Link]
  • 26 – No Free Lunch Theorem [Link]
  • 27 – Exponential Distribution [Link]
  • 28 – Missing Values [Link]
  • 29 – Decision Tree (Intro) [Link]
  • 30 – Classification Problem (Performance Measure) [Link]
  • 31 – Missing Values (Why Not Available?) [Link]
  • 32 – Binomial Distribution [Link]
  • 33 – Clustering Approaches (Hierarchical Methods) [Link]
  • 34 – Central Limit Theorem [Link]
  • 35 – Probability [Link]
  • 36 – Weibull Distribution [Link]
  • 37 – Random Variable (Definition and Types) [Link]
  • 38 – Linear Regression (Best Fitting Line) [Link]
  • 39 – Markov Chains (Intro) [Link]
  • 40 – Training, Validation, Test [Link]
  • 41 – Random Forest [Link]
  • 42 – Markov Chains (Transition Probabilities) [Link]
  • 43 – Frequentist vs Bayesian [Link]
  • 44 – Scatter Plot [Link]
  • 45 – Uniform Distribution [Link]
  • 46 – Logistic Regression (Intro) [Link]
  • 47 – Clustering Approaches (Partitioning Methods) [Link]
  • 48 – Data Standardization [Link]
  • 49 – Probability Interpretations [Link]
  • 50 – Gaussian Distribution [Link]
  • 51 – Quantiles [Link]